JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Integrated case-control and somatic-germline interaction analyses of melanoma susceptibility genes.

While a number of genes have been implicated in melanoma susceptibility, the role of protein-coding variation in melanoma development and progression remains underexplored. To better characterize the role of germline coding variation in melanoma, we conducted a whole-exome case-control and somatic-germline interaction study involving 322 skin cutaneous melanoma cases from The Cancer Genome Atlas and 3607 controls of European ancestry. We controlled for cross-platform technological stratification using XPAT and conducted gene-based association tests using VAAST 2. Four established melanoma susceptibility genes achieved nominal statistical significance, MC1R (p = .0014), MITF (p = .0165) BRCA2 (p = .0206), and MTAP (p = .0393). We also observed a suggestive association for FANCA (p = .002), a gene previously implicated in melanoma survival. The association signal for BRCA2 was driven primarily by likely gene disrupting (LGD) variants, with an Odds Ratio (OR) of 5.62 (95% Confidence Interval (CI) 1.03-30.1). In contrast, the association signals for MC1R and MITF were driven primarily by predicted pathogenic missense variants, with estimated ORs of 1.4 to 3.0 for MC1R and 4.1 for MITF. MTAP exhibited an excess of both LGD and predicted damaging missense variants among cases, with ORs of 5.62 and 3.72, respectively, although neither category was significant. For individuals with known or predicted damaging variants, age of disease onset was significantly lower for two of the four genes, MC1R (p = .005) and MTAP (p = .035). In an analysis of germline carrier status and overlapping copy number alterations, we observed no evidence to support a two-hit model of carcinogenesis in any of the four genes. Although MC1R carriers were represented proportionally among the four molecular tumor subtypes, these individuals accounted for 69% of ultraviolet (UV) radiation mutational signatures among triple-wild type tumors (p = .040), highlighting the increased sensitivity to UV exposure among individuals with loss-of-function variants in MC1R.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app