JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prolonged exposure to 1,25(OH) 2 D 3 and high ionized calcium induces FGF-23 production in intestinal epithelium-like Caco-2 monolayer: A local negative feedback for preventing excessive calcium transport.

Overdose of oral calcium supplement and excessive intestinal calcium absorption can contribute pathophysiological conditions, e.g., nephrolithiasis, vascular calcification, dementia, and cardiovascular accident. Since our previous investigation has indicated that fibroblast growth factor (FGF)-23 could abolish the 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]-enhanced calcium absorption, we further hypothesized that FGF-23 produced locally in the enterocytes might be part of a local negative feedback loop to regulate calcium absorption. Herein, 1,25(OH)2 D3 was found to enhance the transcellular calcium transport across the epithelium-like Caco-2 monolayer, and this stimulatory effect was diminished by preceding prolonged exposure to high-dose 1,25(OH)2 D3 or high concentration of apical ionized calcium. Pretreatment with a neutralizing antibody for FGF-23 prevented this negative feedback regulation of calcium hyperabsorption induced by 1,25(OH)2 D3 . FGF-23 exposure completely abolished the 1,25(OH)2 D3 -enhanced calcium transport. Western blot analysis revealed that FGF-23 expression was upregulated in a dose-dependent manner by 1,25(OH)2 D3 or apical calcium exposure. Finally, calcium-sensing receptor (CaSR) inhibitors were found to prevent the apical calcium-induced suppression of calcium transport. In conclusion, prolonged exposure to high apical calcium and calcium hyperabsorption were sensed by CaSR, which, in turn, increased FGF-23 expression to suppress calcium transport. This local negative feedback loop can help prevent unnecessary calcium uptake and its detrimental consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app