Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Mutation-induced changes of transmembrane pore size revealed by combined ion-channel conductance and single vesicle permeabilization analyses.

Permeabilization of the Endoplasmic Reticulum (ER) is instrumental in the progression of host-cell infection by many viral pathogens. We have described that permeabilization of ER model membranes by the pore-forming domain of the Classical Swine Fever Virus (CSFV) p7 protein depends on two sequence determinants: the C-terminal transmembrane helix, and the preceding polar loop that regulates its activity. Here, by combining ion-channel activity measurements in planar lipid bilayers with imaging of single Giant Unilamellar Vesicles (GUVs), we demonstrate that point substitutions directed to conserved residues within these regions affect ER-like membrane permeabilization following distinct mechanisms. Whereas the polar loop appeared to be involved in protein insertion and oligomerization, substitution of residues predicted to face the lumen of the pore inhibited large conducting channels (>1 nS) over smaller ones (120 pS). Quantitative analyses of the ER-GUV distribution as a function of the solute size revealed a selective inhibition for the permeation of solutes with sizes larger than 4 kDa, further demonstrating that the mutation targeting the transmembrane helix prevented formation of the large pores. Collectively, our data support the idea that the pore-forming domain of p7 may assemble into finite pores with approximate diameters of 1 and 5 nm. Moreover, the observation that the mutation interfering with formation of the larger pores can hamper virus production without affecting ER localization or homo-oligomerization, suggests prospective strategies to block/attenuate pestiviruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app