JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells.

Hyperuricemia has been recognized as an independent risk factor for cardiovascular disease. Urate stimulates NADPH oxidase and induces production of reactive oxygen species (ROS); consequently, intracellular urate accumulation can induce oxidative stress leading to endothelial dysfunction. Here, we studied the mechanism involved, using human umbilical vascular endothelial cells (HUVEC) as a model. Pretreatment with 15 mg/dL unlabeled uric acid (corresponding to hyperuricemia) resulted in increased uptake of [14 C]uric acid at steady-state by HUVEC, whereas pretreatment with 5 mg/dL uric acid (in the normal serum concentration range) did not. However, the initial uptake rate of [14 C]uric acid was not affected by uric acid at either concentration. These results suggest that efflux transport of uric acid is decreased under hyperuricemic conditions. We observed a concomitant decrease of phosphorylated endothelial nitric oxide synthase. Plasma membrane expression of breast cancer resistance protein (BCRP), a uric acid efflux transporter, was decreased under hyperuricemia, though the total cellular expression of BCRP remained constant. Uric acid did not affect expression of another uric acid efflux transporter, multidrug resistance associated protein 4 (MRP4). Moreover, phosphorylation of Akt, which regulates plasma membrane localization of BCRP, was decreased. These uric acid-induced changes of BCRP and Akt were reversed in the presence of the antioxidant N-acetylcysteine. These results suggest that in hyperuricemia, uric acid-induced ROS generation inhibits Akt phosphorylation, causing a decrease in plasma membrane localization of BCRP, and the resulting decrease of BCRP-mediated efflux leads to increased uric acid accumulation and dysregulation of endothelial function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app