Add like
Add dislike
Add to saved papers

Adaptive mesh refinement for elastic modulus reconstruction in elastography.

Meshes play a crucial role in determining the accuracy of the elastic modulus reconstruction in the elastography when the finite element method is employed. In this article, we propose an adaptive mesh refinement strategy which can ensure the coincidence of the meshes with the shape of the inclusions in the observed tissue. This strategy is based on the intensity distribution of the strain image where the variance of the strain distribution in each element of the meshes is used to measure the homogeneity of the element, that is, the larger the strain variance is the more inhomogeneous the element will be and hence more detailed information will be included in this element. For more accurate reconstruction of such detailed information, mesh refinement procedure is implemented in such elements. Besides, two refinement steps are employed for the reconstruction to improve the fitness of the reconstructed image and the observed tissue. Simulation results show that the two-stage adaptive mesh refinement algorithm performs well without needing any prior information about the internal geometric shape in tissue. Not only Young's moduli of models but also shapes of the inclusions can be reconstructed perfectly and quickly with our proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app