Add like
Add dislike
Add to saved papers

Integrated wearable and self-carrying active upper limb orthosis.

The aim of this study was to develop a prototype of an orthotic system that can be used as a support tool in the rehabilitation of the upper limb. The construction of this device was motivated by the increasing number of subjects suffering from full or partial loss of the upper limb function as a consequence of spinal cord injuries, strokes, occupational syndromes and sports injuries. The majority of procedures used in upper limb rehabilitation consist of repetitive movements enforced by physiotherapists; a robotic device executing the same tasks seems to be a plausible solution if the orthosis can be programmed and controlled automatically. This study reports the mechanical design, electronic instrumentation and automatic control of an upper limb orthosis made of plastic polymer that makes the orthosis a wearable and self-carrying device. The orthosis consisted of a mechatronic device with five joints. The pieces made by a three-dimensional plastic printer were used to construct the device leading to a total weight of 2.6 kg. The application of a robust automatic controller based on the sliding-mode theory forces the movement of the arm, while taking into account the constraints in each angular displacement of the orthosis. A set of reference trajectories designed to represent the usual movements of a healthy upper limb served for evaluating the controller execution. The orthosis was tested on 15 volunteers with a maximum experimental steady-state error of 2% in the angular deviation of all articulations with respect to their reference trajectories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app