Add like
Add dislike
Add to saved papers

Effects of carbomer 940 hydrogel on burn wounds: an in vitro and in vivo study.

PURPOSE: This study was designed to investigate the applicability of carbomer 940 hydrogel on skin-burn wounds by focusing on its effects on the zone of stasis.

METHOD: Fibroblast cells were used to assess the cytotoxicity of carbomer 940. Wound healing was monitored by laser Doppler flowmetry and histopathological analysis. Twenty adult male Wistar rats were randomly divided into two groups (N = 10 each). After shaving their dorsum, a 'burn comb' was contacted bilaterally on each side of the spine. Carbomer 940 hydrogel and TegaDerm were used as topical dressing, in the experimental group, while normal saline and TegaDerm were used as the control. The dressing was changed daily and the blood flow was measured until the animals were euthanized. The wound samples were collected at days 3 and 21 for histopathological studies. Cell viability study showed that the hydrogel was non-cytotoxic.

RESULT: Our results revealed that skin blood perfusion in the zone of stasis was elevated at 24 hour post-burning, in the experimental group but not in the control group (p < .05) and this trend continued until the animals were euthanized. Histopathologically, there was statistically more epithelial tissue in the zone of stasis in the experimental group than in the control group, and the sebaceous glands and hair follicles remained viable in the group treated by hydrogel on day 3. There was significantly more collagen deposition and fibroplasia in the ischemic zones of the experimental group than in the control group at day 21.

CONCLUSION: Our study has shown that carbomer 940 hydrogel is a nontoxic biomaterial, which improved tissue perfusion and decreased the area of necrotic tissue in burn wounds. Application of this biomaterial in treatment of burn injuries deserves further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app