Add like
Add dislike
Add to saved papers

A Tensile Constitutive Relationship and a Finite Element Model of Electrospun Nanofibrous Mats.

Nanomaterials 2018 January 9
It is difficult to establish a numerical model for a certain structure of electrospun nanofibrous mats, due to their high porosity and non-linear characteristics, that can fully consider these characteristics and describe their mechanical behaviors. In this paper, an analytical method of meso-mechanics was adopted to establish the tensile constitutive relationship between a single fiber and mats from fiber-web microstructures. Meanwhile, a macroscopic finite element model was developed and verified through uniaxial tensile stress-strain experimental data of silk fibroin (SF)/polycaprolactone (PCL) nanofibrous mats. The compared results show that the constitutive relation and finite element model could satisfactorily express elastic-plastic tensile mechanical behaviors of the polymer. This model helps regulate the microstructure of nanofibrous mats to meet the mechanical requirements in engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app