Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets.

Developmental Cell 2018 January 9
Cytosolic lipid droplets (LDs) are the main storage organelles for metabolic energy in most cells. They are unusual organelles that are bounded by a phospholipid monolayer and specific surface proteins, including key enzymes of lipid and energy metabolism. Proteins targeting LDs from the cytoplasm often contain amphipathic helices, but how they bind to LDs is not well understood. Combining computer simulations with experimental studies in vitro and in cells, we uncover a general mechanism for targeting of cytosolic proteins to LDs: large hydrophobic residues of amphipathic helices detect and bind to large, persistent membrane packing defects that are unique to the LD surface. Surprisingly, amphipathic helices with large hydrophobic residues from many different proteins are capable of binding to LDs. This suggests that LD protein composition is additionally determined by mechanisms that selectively prevent proteins from binding LDs, such as macromolecular crowding at the LD surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app