Add like
Add dislike
Add to saved papers

Survival in Spatially Variable Thermal Environments: Consequences of Induced Thermal Defense.

Integrative Zoology 2018 January 10
As Earth's climate warms, plants and animals are likely to encounter an increased frequency and severity of extreme thermal events, and the ensuing destruction is likely to play an important role in structuring ecological communities. However, accurate prediction of the population-scale consequences of extreme thermal events requires detailed knowledge of the small-scale interaction between individual organisms and their thermal environment. In this study I propose a simple model that allows one to explore how individual-to-individual variation in body temperature and thermal physiology determines what fraction of a population will be killed by an extreme thermal event. The model takes into account the possibility that each individual plant or animal can respond to an event by adjusting its thermal tolerance in proportion to the stress it encounters. When thermal stress is relatively mild, the model shows that a graded physiological response of this sort leads to increased survivorship. However, the model predicts that in more severe events a proportional induced defense can actually reduce survivorship, a counter-intuitive possibility that is not predicted by standard theory. The model can easily be tailored to different species and thermal environments to provide an estimate of when, where, and how physiology can buffer the effects of climate warming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app