Add like
Add dislike
Add to saved papers

Bilirubin reversibly affects cell death and odontogenic capacity in stem cells from human exfoliated deciduous teeth.

Oral Diseases 2018 July
OBJECTIVE: Hyperbilirubinemia in patients with biliary atresia causes deciduous tooth injuries such as green pigmentation and dentin hypoplasia. In patients with biliary atresia who received liver transplantation, tooth structure appears to be recovered radiographically. Nevertheless, little is known about cellular mechanisms underlying bilirubin-induced damage and suppression of deciduous tooth formation. In this study, we examined the effects of bilirubin in stem cells from human exfoliated deciduous teeth (SHED) in vitro.

MATERIALS AND METHODS: SHED were cultured under exposure to excess of bilirubin and then interruption of bilirubin stimulation.

RESULTS: Bilirubin induced cell death and inhibited the odontogenic capacity of SHED by suppressing AKT and extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathways and enhancing nuclear factor kappa B p65 (NF-κB p65) pathway. The interruption of bilirubin stimulation reduced cell death and recovered the inhibited odontogenic capacity of bilirubin-damaged SHED. The bilirubin interruption also normalized the impaired AKT, ERK1/2, and NF-κB p65 signaling pathways.

CONCLUSION: These findings suggest that tooth hypodontia in patients with hyperbilirubinemia might be due to bilirubin-induced cell death and dentinogenic dysfunction of odontogenic stem cells via AKT, ERK1/2, and NF-κB pathways and also suggested that bilirubin-induced impairments in odontogenic stem cells were reversible when bilirubin stimulation is interrupted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app