COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A comparison of 2-hydroxyglutarate detection at 3 and 7 T with long-TE semi-LASER.

Abnormally high levels of the 'oncometabolite' 2-hydroxyglutarate (2-HG) occur in many grade II and III gliomas, and correlate with mutations in the genes of isocitrate dehydrogenase (IDH) isoforms. In vivo measurement of 2-HG in patients, using magnetic resonance spectroscopy (MRS), has largely been carried out at 3 T, yet signal overlap continues to pose a challenge for 2-HG detection. To combat this, several groups have proposed MRS methods at ultra-high field (≥7 T) where theoretical increases in signal-to-noise ratio and spectral resolution could improve 2-HG detection. Long echo time (long-TE) semi-localization by adiabatic selective refocusing (semi-LASER) (TE = 110 ms) is a promising method for improved 2-HG detection in vivo at either 3 or 7 T owing to the use of broad-band adiabatic localization. Using previously published semi-LASER methods at 3 and 7 T, this study directly compares the detectability of 2-HG in phantoms and in vivo across nine patients. Cramér-Rao lower bounds (CRLBs) of 2-HG fitting were found to be significantly lower at 7 T (6 ± 2%) relative to 3 T (15 ± 7%) (p = 0.0019), yet were larger at 7 T in an IDH wild-type patient. Although no increase in SNR was detected at 7 T (77 ± 26) relative to 3 T (77 ± 30), the detection of 2-HG was greatly enhanced through an improved spectral profile and increased resolution at 7 T. 7 T had a large effect on pairwise fitting correlations between γ-aminobutyric acid (GABA) and 2-HG (p = 0.004), and resulted in smaller coefficients. The increased sensitivity for 2-HG detection using long-TE acquisition at 7 T may allow for more rapid estimation of 2-HG (within a few spectral averages) together with other associated metabolic markers in glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app