Add like
Add dislike
Add to saved papers

Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH-/H 2 O 2 -Responsive O 2 -Evolving Synergetic Cancer Therapy.

Advanced Materials 2018 Februrary
Tumor hypoxia is typically presented in the central region of solid tumors, which is mainly caused by an inadequate blood flow and oxygen supply. In the conventional treatment of hypoxic human tumors, not only the oxygen-dependent photodynamic therapy (PDT), but also antitumor drug-based chemotherapy, is considerably limited. The use of direct oxygen delivering approach with oxygen-dependent PDT or chemotherapy may potentiate the reactive oxygen species (ROS)-mediated cytotoxicity of the drug toward normal tissues. Herein, a synergetic one-for-all mesoporous cerium oxide upconversion biophotocatalyst is developed to achieve intratumorally endogenous H2 O2 -responsive self-sufficiency of O2 and near-infrared light controlled PDT simultaneously for overcoming hypoxia cancer. Furthermore, the sufficient O2 plays an important role in overcoming the chemotherapeutic drug-resistant cancer caused by hypoxia, therefore inducing tumor cell apoptosis significantly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app