Add like
Add dislike
Add to saved papers

High-Performance Single-Crystalline Perovskite Thin-Film Photodetector.

Advanced Materials 2018 Februrary
The best performing modern optoelectronic devices rely on single-crystalline thin-film (SC-TF) semiconductors grown epitaxially. The emerging halide perovskites, which can be synthesized via low-cost solution-based methods, have achieved substantial success in various optoelectronic devices including solar cells, lasers, light-emitting diodes, and photodetectors. However, to date, the performance of these perovskite devices based on polycrystalline thin-film active layers lags behind the epitaxially grown semiconductor devices. Here, a photodetector based on SC-TF perovskite active layer is reported with a record performance of a 50 million gain, 70 GHz gain-bandwidth product, and a 100-photon level detection limit at 180 Hz modulation bandwidth, which as far as we know are the highest values among all the reported perovskite photodetectors. The superior performance of the device originates from replacing polycrystalline thin film by a thickness-optimized SC-TF with much higher mobility and longer recombination time. The results indicate that high-performance perovskite devices based on SC-TF may become competitive in modern optoelectronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app