Add like
Add dislike
Add to saved papers

Tail reduction process during human embryonic development.

Although the human tail is completely absent at birth, the embryonic tail is formed just as in other tailed amniotes. Since all morphological variations are created from variations in developmental processes, elucidation of the tail reduction process during embryonic development may be necessary to clarify the human evolutionary process. The tail has also been of great interest to the medical community. The congenital anomaly referred to as 'human tail', i.e. the occurrence of a tail-like structure, has been reported and was thought to represent a vestige of the embryonic tail; however, this hypothesis has not been verified. Accordingly, in this study, we aimed to establish a new method to visualize all somites in an embryo. We used sagittal-sectioned embryos from Carnegie Stage (CS) 13 to CS23. All samples were obtained from the Congenital Anomaly Research Center, Kyoto University, Japan. Combining photomicroscopy and three-dimensional reconstruction, we clearly visualized and labeled all somites. We found that the number of somites peaked at CS16 and dramatically decreased by approximately five somites. Tail reduction with a decrease in somites has also been observed in other short-tailed amniotes; thus, this result suggested the possibility that there is a common mechanism for morphogenesis of short tails in amniote species. Additionally, our findings provided important insights into the cause of the congenital anomaly known as 'human tail'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app