Add like
Add dislike
Add to saved papers

Amyloid Beta Peptide VHHQ, KLVFF, and IIGLMVGGVV Domains Involved in Fibrilization: AFM and Electrochemical Characterization.

Analytical Chemistry 2018 Februrary 7
The time-dependent structural modifications and oxidation behavior of specifically chosen five short amyloid beta (Aβ) peptides, Aβ1-16 , Aβ1-28 , Aβ10-20 , Aβ12-28 , and Aβ17-42 , fragments of the complete human Aβ1-40 peptide, were investigated by atomic force microscopy (AFM) and voltammetry. The objective was to determine the influence of different Aβ domains (VHHQ that contains electroactive histidine H residues, KLVFF that is the peptide hydrophobic aggregation core, and IIGLMVGGVV that is the C-terminus hydrophobic region), and of Aβ peptide hydrophobicity, in the fibrilization mechanism. The short Aβ peptides absence of aggregation or the time-dependent aggregation mechanisms, at room temperature, in free chloride media, within the time window from 0 to 48 h, were established by AFM via changes in their adsorption morphology, and by differential pulse voltammetry, via modifications of the amino acid residues oxidation peak currents. The first oxidation peak was of tyrosine Y residue and the second peak was of histidine H and methionine M residues oxidation. A correlation between the presence of an intact highly hydrophobic KLVFF aggregation core and the time-dependent changes on the Aβ peptides aggregation was found. The hydrophobic C-terminal domain IIGLMVGGVV, present in the Aβ1-40 peptide, also contributed to accelerate the formation of Aβ1-40 peptide aggregates and fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app