Add like
Add dislike
Add to saved papers

Orientation Control of Molecularly Functionalized Surfaces Applied to the Simultaneous Alignment and Sorting of Carbon Nanotubes.

Angewandte Chemie 2018 Februrary 24
Self-assembly has been relied upon for molecular alignment in many advanced technological applications. However, although effective, it is inherently limited in its capability for optimization. Despite the potential benefits, the seemingly fundamental strategy of external orientation control has yet to be realized. Herein we demonstrate an approach that allows control of the orientation of small molecules covalently bound to a surface. The method exploits an alignment relay technique, passing alignment information through a liquid-crystal medium to small molecules to control surface functionalization events. The method is technically simple and can be carried out on a bench top without the need for specialized equipment. Moreover, we demonstrate the utility of the resulting surfaces to address two long-standing problems in nanoscience: the sorting and alignment of single-walled carbon nanotubes. This new method enabled significant alignment of the nanotubes as well as length and diameter sorting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app