Add like
Add dislike
Add to saved papers

Fixed dosing of intravenous tocilizumab in rheumatoid arthritis. Results from a population pharmacokinetic analysis.

AIMS: Intravenous tocilizumab is currently dosed on body weight, although a weak correlation between body weight and clearance has been described. The aim of the study was to assess the current dosing strategy and provide a scientific rational for dosing using a modelling and simulation approach.

METHODS: Serum concentrations and covariates were obtained from intravenous tocilizumab treated subjects at a dose of 4, 6 or 8 mg every 28 days. A population pharmacokinetic analysis was performed using nonlinear mixed effects modelling. The final model was used to simulate tocilizumab exposure to assess a dosing strategy based on body weight or fixed dosing, using as target a cumulative area under the curve at 24 weeks of treatment above 100 × 103  μg h ml-1 .

RESULTS: A one-compartment disposition model with parallel linear and nonlinear elimination best described the concentration-time data. The typical population mean values for clearance, apparent volume of distribution, maximum elimination rate and Michaelis-Menten constant were 0.0104 l h-1 , 4.83 l, 0.239 mg h-1 and 4.22 μg ml-1 , respectively. Interindividual variability was included for clearance (17.0%) and volume of distribution (30.8%). Significant covariates for clearance were patient body weight and C-reactive protein serum levels. An estimated exponent for body weight of 0.360 confirms the weak relationship with tocilizumab clearance. Simulations demonstrate that patients with lower weights are at risk of underdosing if the weight-based dosing approach is used. However, fixed-dosing provides a more consistent drug exposure regardless of weight category.

CONCLUSIONS: Our study provides evidence to support fixed dosing of intravenous tocilizumab in rheumatoid arthritis patients since it reduces variability in tocilizumab exposure among weight categories compared to the current weight-based dosing approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app