Add like
Add dislike
Add to saved papers

Dynamic field-of-view imaging to increase temporal resolution in the early phase of contrast media uptake in breast DCE-MRI: A feasibility study.

Medical Physics 2018 March
PURPOSE: To increase diagnostic accuracy of breast MRI by increasing temporal resolution and more accurately sampling the early kinetics of contrast media uptake. We tested the feasibility of accelerating bilateral breast DCE-MRI by reducing the FOV, allowing aliasing, and unfolding the resulting images.

METHODS: Previous experience with an "ultrafast" protocol for bilateral breast DCE-MRI (6-10 s temporal resolution) showed that the number of significantly enhancing voxels is very low in the first 30-45 s after contrast media injection. This suggests that overlap of enhancing voxels in aliased images will be very infrequent. Therefore, aliased images can be acquired during the first 30-45 s after contrast media injection and unfolded to produce full-FOV images with few errors. In a proof-of-principle test, aliased images were simulated from the first 30 s of full-FOV acquisitions. Cases with relatively dense early enhancement were selected to test this method in a worst-case scenario. In an initial test, an FOV of 60% the size of the full FOV was simulated. To reduce the probability of errors due to overlapping voxels in aliased images, we then tested a dynamic FOV approach. The FOV was progressively increased so that enhancing voxels could not overlap at multiple time-points, and areas where enhancing voxels overlapped at a given time-point could be unfolded by interpolating between the preceding and subsequent time-points (acquired with different FOVs). The simulated FOV sizes for each of the time-points were 31%, 44%, and 77% of the full FOV. Subtraction images (post- minus precontrast) were generated for aliased images and filtered to select significantly enhancing voxels. Comparison of early, highly aliased images, with later, less aliased images then helped to identify the true locations of enhancing voxels.

RESULTS: In the initial aliasing simulations, an average of 2.9% of the enhancing voxels above the chest wall overlapped in the aliased images (range 0.1%-6.7%). The similarity between simulated unfolded images and the correct full-FOV images, evaluated using CW-SSIM (complex wavelet similarity index), was 0.50 ± 0.26, 0.76 ± 0.09, and 0.80 ± 0.10 for the first, second, and third time-point, respectively (numbers closer to 1 indicate more similar images). For the dynamic FOV tests, an average of 11% of the enhancing voxels above the chest wall overlapped (range 0%-40%) due to greater aliasing at early time-points. Despite more voxels overlapping, the CW-SSIM values for the data acquired with dynamic FOVs were 0.64 ± 0.25, 0.93 ± 0.04, and 0.97 ± 0.02 for the first, second, and third time-points, respectively.

CONCLUSIONS: Dynamic FOV imaging allows accelerated bilateral breast DCE-MRI during the early contrast media uptake phase. This method relies on the sparsity of enhancement at the early phases of DCE-MRI of the breast. The results of simulations suggest that dynamic FOV imaging and unfolding produces images that are very close to fully sampled images, and allows temporal resolution as high as 2 s per image.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app