Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Subcellular Nanorheology Reveals Lysosomal Viscosity as a Reporter for Lysosomal Storage Diseases.

Nano Letters 2018 Februrary 15
We describe a new method to measure viscosity within subcellular organelles of a living cell using nanorheology. We demonstrate proof of concept by measuring viscosity in lysosomes in multiple cell types and disease models. The lysosome is an organelle responsible for the breakdown of complex biomolecules. When different lysosomal proteins are defective, they are unable to break down specific biological substrates, which get stored within the lysosome, causing about 70 fatal diseases called lysosomal storage disorders (LSDs). Although the buildup of storage material is critical to the pathology of these diseases, methods to monitor cargo accumulation in the lysosome are lacking for most LSDs. Using passive particle tracking nanorheology and fluorescence recovery after photobleaching, we report that viscosity in the lysosome increases significantly during cargo accumulation in several LSD models. In a mammalian cell culture model of Niemann Pick C, lysosomal viscosity directly correlates with the levels of accumulated cholesterol. We also observed increased viscosity in diverse LSD models in Caenorhabditis elegans, revealing that lysosomal viscosity is a powerful reporter with which to monitor substrate accumulation in LSDs for new diagnostics or to assay therapeutic efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app