Add like
Add dislike
Add to saved papers

Grain-by-Grain Compositional Variations and Interstitial Metals-A New Route toward Achieving High Performance in Half-Heusler Thermoelectrics.

Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu "wetting layers" between grains, and-most importantly-the presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCuy Sn (y ≤ 0.1) compositions have a temperature-averaged ZTdevice = 0.3-0.4 and estimated leg power outputs of 6-7 W cm-2 in the 323-773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app