Add like
Add dislike
Add to saved papers

Design of Phase-Changeable and Injectable Alginate Hydrogel for Imaging-Guided Tumor Hyperthermia and Chemotherapy.

The objective of the present study was to construct an alginate (AG)-based phase-changeable and injectable hydrogel for imaging-guided tumor hyperthermia and chemotherapy. Based on the binding between the α-l-guluronic blocks of AG and calcium ions, the AG/MoS2 /Bi2 S3 -poly(ethylene glycol) (MBP)/doxorubicin (DOX) solution formed a cross-linked hydrogel to simultaneously encapsulate MBP nanosheets and DOX within the hydrogel matrix. The in situ formed hydrogel can act as a reservoir to control the release of entrapped drug molecules, and the doped MBP nanosheets and DOX can realize computed tomography/photoacoustic dual-modal imaging-guided in vivo tumor photothermal therapy and chemotherapy, respectively. The AG/MBP/DOX hydrogel exhibited excellent photothermal conversion properties with mass extinction coefficient of 45.1 L/g/cm and photothermal conversion efficiency of 42.7%. Besides, the heat from the photothermal transformation of MBP can promote drug diffusion from the hydrogel to realize on-demand drug release. Additionally, the hydrogel system can restrain MBP and DOX from entering into the blood stream during therapy, and therefore substantially decrease their side effects on normal organs. More importantly, the drug loading of the AG hydrogel was general and can be extended to the encapsulation of antibiotics, such as amoxicillin, for the prevention of postoperative infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app