Add like
Add dislike
Add to saved papers

Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae.

AMB Express 2018 January 9
In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment was purified, and identified as 2-decarboxybetanin by high-resolution mass spectrometry (MS) and MS/MS analysis. Transcriptomic analysis revealed the differentially expressed genes and metabolic profile of P. novae-zelandiae in response to different cultivations and exhibited the complete biosynthetic pathway of 2-decarboxybetanin in P. novae-zelandiae. Betalains are important water-soluble nitrogen-containing food coloring agents, obtained mainly from beetroot by chemical extraction. This paper is the first report about the production of betalain by microbial fermentation, and results exhibit the possible use of fungal fermentation in future 2-decarboxybetanin production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app