Add like
Add dislike
Add to saved papers

A novel hamster nonalcoholic steatohepatitis model induced by a high-fat and high-cholesterol diet.

Nonalcoholic steatohepatitis (NASH), in which there is steatosis and fibrosis in the liver, is linked to metabolic syndrome and progresses to hepatic cirrhosis. In this study, a novel hamster NASH model derived from metabolic syndrome was made using hamsters. Hamsters were fed a normal or a high-fat and high-cholesterol (HFC) diet for 12 weeks. Body weight and the ratio of liver weight to body weight were significantly greater in HFC diet-fed hamsters than in normal diet-fed hamsters. Triglyceride, low-density lipoprotein cholesterol, and glucose levels in blood were significantly increased in HFC diet-fed hamsters, and blood pressure also tended to be high, suggesting that the HFC diet-fed hamsters developed metabolic syndrome. Hepatic steatosis and fibrosis were observed in liver sections of HFC diet-fed hamsters, as in patients with NASH, but they were not seen in normal diet-fed hamsters. Chymase generates angiotensin II and transforming growth factor (TGF)-β, both of which are related to hepatic steatosis and fibrosis, and a significant augmentation of chymase activity was observed in livers from HFC diet-fed hamsters. Both angiotensin II and TGF-β were also significantly increased in livers of HFC diet-fed hamsters. Thus, HFC diet-fed hamsters might develop metabolic syndrome-derived NASH that clinically resembles that in NASH patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app