Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Single-crystal metal growth on amorphous insulating substrates.

Metal structures on insulators are essential components in advanced electronic and nanooptical systems. Their electronic and optical properties are closely tied to their crystal quality, due to the strong dependence of carrier transport and band structure on defects and grain boundaries. Here we report a method for creating patterned single-crystal metal microstructures on amorphous insulating substrates, using liquid phase epitaxy. In this process, the patterned metal microstructures are encapsulated in an insulating crucible, together with a small seed of a differing material. The system is heated to temperatures above the metal melting point, followed by cooling and metal crystallization. During the heating process, the metal and seed form a high-melting-point solid solution, which directs liquid epitaxial metal growth. High yield of single-crystal metal with different sizes is confirmed with electron backscatter diffraction images, after removing the insulating crucible. Unexpectedly, the metal microstructures crystallize with the [Formula: see text] direction normal to the plane of the film. This platform technology will enable the large-scale integration of high-performance plasmonic and electronic nanosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app