COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in V-ATPase subunits of human urinary exosomes reflect the renal response to acute acid/alkali loading and the defects in distal renal tubular acidosis.

In the kidney, final urinary acidification is achieved by V-ATPases expressed in type A intercalated cells. The B1 subunit of the V-ATPase is required for maximal urinary acidification, while the role of the homologous B2 subunit is less clear. Here we examined the effect of acute acid/alkali loading in humans on B1 and B2 subunit abundance in urinary exosomes in normal individuals and of acid loading in patients with distal renal tubular acidosis (dRTA). Specificities of B1 and B2 subunit antibodies were verified by yeast heterologously expressing human B1 and B2 subunits, and murine wild-type and B1-deleted kidney lysates. Acute ammonium chloride loading elicited systemic acidemia, a drop in urinary pH, and increased urinary ammonium excretion. Nadir urinary pH was achieved at four to five hours, and exosomal B1 abundance was significantly increased at two through six hours after ammonium chloride loading. After acute equimolar sodium bicarbonate loading, blood and urinary pH rose rapidly, with a concomitant reduction of exosomal B1 abundance within two hours, which remained lower throughout the test. In contrast, no change in exosomal B2 abundance was found following acid or alkali loading. In patients with inherited or acquired distal RTA, the urinary B1 subunit was extremely low or undetectable and did not respond to acid loading in urine, whereas no change in B2 subunit was found. Thus, both B1 and B2 subunits of the V-ATPase are detectable in human urinary exosomes, and acid and alkali loading or distal RTA cause changes in the B1 but not B2 subunit abundance in urinary exosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app