Add like
Add dislike
Add to saved papers

Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode.

Talanta 2018 March 2
Herein, we propose a new approach for selective determination of carbofuran (CBF) in vegetables, based on a simple flow-injection system using a molecularly-imprinted amperometric sensor. The sensor design is based on a carbon-paste electrode decorated with carbon nanotubes and gold-coated magnetite (CNTs-Fe3 O4 @Au/CPE) coated with a molecularly-imprinted polymer (MIP) for CBF sensing. The MIP was synthesized on the electrode surface by electropolymerization using a supramolecular complex, namely 4-ter-butylcalix [8] arene-CBF (4TB[8]A-CBF), as the template. We used o-phenylenediamine as the functional monomer. Our results demonstrate that incorporation of the MIP coating improves the electrochemical catalytic properties of the electrode, increases its surface area, and increases CBF selectivity by modulating the electrical signal through elution and re-adsorption of CBF. The imprinted sensor (MIP-CNTs-Fe3 O4 @Au/CPE) was used in a flow-injection analysis (FIA) system. Experimental conditions were investigated in amperometric mode, with the following optimized parameters: phosphate buffer solution (0.1M, pH 8.0) as the carrier, flow rate 0.5mLmin-1 , applied potential +0.50V. When used in the FIA system, the designed imprinted sensor yields a linear dynamic range for CBF from 0.1 to 100µM (r2 = 0.998) with a detection limit of 3.8nM (3Sb ), and a quantification limit of 12.7nM (10Sb ). The sensor exhibits acceptable precision (%RSD = 4.8%) and good selectivity toward CBF. We successfully applied the electrode to detect CBF in vegetable samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app