Add like
Add dislike
Add to saved papers

Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances affects leukocyte telomere length in female newborns.

Evidence has shown that leukocyte telomere length (LTL) at birth is related to the susceptibility to various diseases in later life and the setting of newborn LTL is influenced by the intrauterine environment. Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as a kind of persistent organic pollutants, are commonly used in commercial and domestic applications and are capable of crossing the maternal-fetal barrier during pregnancy. We hypothesized that intrauterine exposure to PFASs may affect fetal LTL by increasing oxidative stress. To verify this hypothesis, LTL, concentrations of PFASs and reactive oxygen species (ROS) were measured in umbilical cord blood of 581 newborns from a prospective cohort. Our results showed that there were interactions between PFOS/PFDA and sex on LTL and ROS. The LTL was significantly shorter (0.926 ± 0.053 vs 0.945 ± 0.054, P = .023 for PFOS; 0.919 ± 0.063 vs 0.940 ± 0.059, P = .011 for PFDA) and the ROS levels were extremely higher (252.9 ± 60.5 [M] vs 233.5 ± 53.6 [M], P = .031 for PFOS; 255.2 ± 62.9 [M] vs 232.9 ± 58.3 [M], P = .011 for PFDA) in the female newborns whose PFOS or PFDA concentrations fell in the upmost quartile compared with those in the lowest quartile after adjusting for potential confounders. ROS levels were inversely associated with LTL in female newborns (β = -1.42 × 10-4 , P = .022). 13% of the effect of PFOS on female LTL was mediated through ROS approximately by the mediation analyses. However, in male newborns, no relationships among PFASs, ROS and LTL were observed. Our findings suggest a "programming" role of PFASs on fetal telomere biology system in females in intrauterine stage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app