Add like
Add dislike
Add to saved papers

Mutant cartilage oligomeric matrix protein (COMP) compromises bone integrity, joint function and the balance between adipogenesis and osteogenesis.

Mutations in COMP (cartilage oligomeric matrix protein) cause severe long bone shortening in mice and humans. Previously, we showed that massive accumulation of misfolded COMP in the ER of growth plate chondrocytes in our MT-COMP mouse model of pseudoachondroplasia (PSACH) causes premature chondrocyte death and loss of linear growth. Premature chondrocyte death results from activation of oxidative stress and inflammation through the CHOP-ER pathway and is reduced by removing CHOP or by anti-inflammatory or antioxidant therapies. Although the mutant COMP chondrocyte pathologic mechanism is now recognized, the effect of mutant COMP on bone quality and joint health (laxity) is largely unknown. Applying multiple analytic approaches, we describe a novel mechanism by which the deleterious consequences of mutant COMP retention results in upregulation of miR-223 disturbing the adipogenesis - osteogenesis balance. This results in reduction in bone mineral density, bone quality, mechanical strength and subchondral bone thickness. These, in addition to abnormal patterns of ossification at the ends of the femoral bones likely contribute to precocious osteoarthritis (OA) of the hips and knees in the MT-COMP mouse and PSACH. Moreover, joint laxity is compromised by abnormally thin ligaments. Altogether, these novel findings align with the PSACH phenotype of delayed ossification and bone age, extreme joint laxity and joint erosion, and extend our understanding of the underlying processes that affect bone in PSACH. These results introduce a novel finding that miR-223 is involved in the ossification defect in MT-COMP mice making it a therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app