Add like
Add dislike
Add to saved papers

Development of bead based multiplexed immunoassay for evaluation of midkine, syndecan-1, and ANGPTL4 in patient serum.

BACKGROUND: Angiogenesis is associated with tumor progression in a range of malignancies. Herein, we develop custom immunobead assays for several mechanistically important targets and evaluated these against sera from cohorts of non-small cell lung cancer (NSCLC) patients.

METHODS: Antigen "capture" antibodies for midkine, syndecan-1, and ANGPTL4 were independently conjugated to MagPlex® Microspheres using standard carbodiimide/NHS-based chemistry. These reagents served as the basis for quantitative sandwich assay assembly using biotinylated detection antibodies and R-phycoerythrin-conjugated streptavidin reporter system. Standard curves were created using dilution series of recombinant target proteins with assay performance characteristics calculated, accordingly. Finally, we evaluated a range of serum samples from NSCLC patients (n = 32) to verify assay performance.

RESULTS: Multiplexed assays for midkine, syndecan-1, and ANGPTL4 were developed with three orders of magnitude in dynamic range, excellent intra- and inter-assay precision, and accuracy parameters (<10%, and <15% variability, respectively). Detection and quantifications limits were suitable for the three assays to efficiently evaluate sera across a range of disease stages with a four-fold dilution factor.

CONCLUSION: We successfully developed and analytically validated a 3-plex immunobead assay for quantifying midkine, syndecan-1, and ANGPTL4 in patient sera. This multiplexed assay will provide an important tool for future studies delineating the role of angiogenesis in lung cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app