JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hierarchical Nanotubular Anatase/Rutile/TiO 2 (B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H 2 Production.

Oxygen vacancies have been demonstrated to enhance the interfacial charge separation in TiO2 -based photocatalysts. In this report, we explored a facile route to synthesize hierarchical nanotubular anatase/rutile/TiO2 (B) nanostructures with high surface area and defective electronic structure. The formation of oxygen vacancies in the heterophase junction was analyzed by UV-vis absorption spectra, electron spin resonance, and X-ray photoelectron spectroscopy. The enhanced interfacial charge separation and transportation ensured the excellent photoactivity of oxygen-deficient junctions for the photocatalytic production of hydrogen. As a result, the defective anatase/rutile/TiO2 (B) junction showed a high hydrogen evolution rate of 2.79 mmol/h, which was 19 times higher than blank TiO2 nanotubes. The results demonstrate that defect modulation is a powerful tool to enhance the catalytic performances of TiO2 -based photocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app