Add like
Add dislike
Add to saved papers

Kinetic basis for the activation of human cyclooxygenase-2 rather than cyclooxygenase-1 by nitric oxide.

Numerous studies have shown that nitric oxide (NO) interacts with human cyclooxygenase (COX); however, conflicting results exist with respect to their interactions. Herein, recombinant human COX-1 and COX-2 were prepared and treated with NO donors individually under anaerobic and aerobic conditions. The S-nitrosylation detection and subsequent kinetic investigations into the arachidonic acid (AA) oxidation of COX enzymes indicate that NO S-nitrosylates both COX-1 and COX-2 in an oxygen-dependent manner, but enhances only the dioxygenase activity of COX-2. The solution viscosity, deuterium kinetic isotope effect (KIE), and oxygen-18 KIE experiments further demonstrate that NO activates COX-2 by altering the protein conformation to stimulate substrate association/product release and by accelerating the rate of hydrogen abstraction from AA by catalytic tyrosine radicals. These novel findings provide useful information for designing new drugs with less cardiotoxic effects that can block the interaction between NO and COX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app