Add like
Add dislike
Add to saved papers

From laboratory- to pilot-scale: moisture monitoring in fluidized bed granulation by a novel microwave sensor using multivariate calibration approaches.

Recently, microwave resonance technology (MRT) sensor systems operating at four resonances instead of a single resonance frequency were established as a process analytical technology (PAT) tool for moisture monitoring. The additional resonance frequencies extend the technologies' possible application range in pharmaceutical production processes remarkably towards higher moisture contents. In the present study, a novel multi-resonance MRT sensor was installed in a bottom-tangential-spray fluidized bed granulator in order to provide a proof-of-concept of the recently introduced technology in industrial pilot-scale equipment. The mounting position within the granulator was optimized to allow faster measurements and thereby even tighter process control. As the amount of data provided by using novel MRT sensor systems has increased manifold by the additional resonance frequencies and the accelerated measurement rate, it permitted to investigate the benefit of more sophisticated evaluation methods instead of the simple linear regression which is used in established single-resonance systems. Therefore, models for moisture prediction based on multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS) were built and assessed. Correlation was strong (all R2  > 0.988) and predictive abilities were rather acceptable (all RMSE ≤0.5%) for all models over the whole granulation process up to 16% residual moisture. While PCR provided best predictive abilities, MLR proofed as a simple and valuable alternative without the need of chemometric data evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app