Add like
Add dislike
Add to saved papers

miR-302b-3p Promotes Self-Renewal Properties in Leukemia Inhibitory Factor-Withdrawn Embryonic Stem Cells.

Cell Journal 2018 April
OBJECTIVES: Embryonic stem cells (ESCs) are regulated by a gene regulatory circuitry composed of transcription factors, signaling pathways, metabolic mediators, and non-coding RNAs (ncRNAs). MicroRNAs (miRNAs) are short ncRNAs which play crucial roles in ESCs. Here, we explored the impact of miR-302b-3p on ESC self-renewal in the absence of leukemia inhibitory factor (LIF).

MATERIALS AND METHODS: In this experimental study, ESCs were cultured in the presence of 15% fetal bovine serum (FBS) and induced to differentiate by LIF removal. miR-302b-3p overexpression was performed by transient transfection of mature miRNA mimics. Cell cycle profiling was done using propidium iodide (PI) staining followed by flow cytometry. miRNA expression was quantified using a miR-302b-3p-specific TaqMan assay. Data were analyzed using t test, and a P<0.05 was considered statistically significant.

RESULTS: We observed that miR-302b-3p promoted the viability of both wild-type and LIF-withdrawn ESCs. It also increased ESC clonogenicity and alkaline phosphatase (AP) activity. The defective cell cycling of LIF-deprived ESCs was completely rescued by miR-302b-3p delivery. Moreover, miR-302b-3p inhibited the increased cell death rate induced by LIF removal.

CONCLUSIONS: miR-302b-3p, as a pluripotency-associated miRNA, promotes diverse features of ESC self-renewal in the absence of extrinsic LIF signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app