Add like
Add dislike
Add to saved papers

A novel high input impedance front-end for capacitive biopotential measurement.

For capacitive biopotential measurement, a novel high input impedance front-end is proposed. The input impedance of the front-end can achieve more than 100 GΩ by matching the peripheral parameters. The front-end's noise model is provided, and noise optimization is given further. The analysis shows the proposed front-end can achieve at least two orders of input impedance more than the non-inverting amplifier circuit with the same peripheral parameters at the cost of only increasing twice input-referred noise. The final experimental results verify the analysis and show the front-end's feasibility of capacitive sensing electrocardiogram signal. Graphical abstract A novel high input impedance front-end is proposed, which impedance can achieve more than 100 GΩ by matching the peripheral parameters. The analysis and noise optimization results show the proposed front-end can achieve at least two orders of input impedance more than the non-inverting amplifier circuit with the same peripheral parameters at the cost of only increasing twice input-referred noise. The final experimental results verify the analysis and show its feasibility of capacitive sensing electrocardiogram signal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app