Add like
Add dislike
Add to saved papers

High-Frequency 4-Dimensional Ultrasound (4DUS): A Reliable Method for Assessing Murine Cardiac Function.

In vivo imaging has provided a unique framework for studying pathological progression in various mouse models of cardiac disease. Although conventional short-axis motion-mode (SAX MM) ultrasound and cine magnetic resonance imaging (MRI) are two of the most prevalent strategies used for quantifying cardiac function, there are few notable limitations including imprecision, inaccuracy, and geometric assumptions with ultrasound, or large and costly systems with substantial infrastructure requirements with MRI. Here we present an automated 4-dimensional ultrasound (4DUS) technique that provides comparable information to cine MRI through spatiotemporally synced imaging of cardiac motion. Cardiac function metrics derived from SAX MM, cine MRI, and 4DUS data show close agreement between cine MRI and 4DUS but overestimations by SAX MM. The inclusion of a mouse model of cardiac hypertrophy further highlights the precision of 4DUS compared with that of SAX MM, with narrower groupings of cardiac metrics based on health status. Our findings suggest that murine 4DUS can be used as a reliable, accurate, and cost-effective technique for longitudinal studies of cardiac function and disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app