Add like
Add dislike
Add to saved papers

In-droplet microparticle separation using travelling surface acoustic wave.

Biomicrofluidics 2017 November
Droplets in microfluidic systems can contain microscale objects such as cells and microparticles. The control of the positions of microscale objects within a microchannel is crucial for practical applications in not only continuous-flow-based but also droplet-based systems. This paper proposes an active method for the separation of microparticles inside moving droplets which uses travelling surface acoustic waves (TSAWs). We demonstrate the preconcentration and separation of 5 and 10  μ m polystyrene microparticles in moving water-in-oil droplets through the application of TSAWs with two different frequencies. The microparticles inside the droplets are affected by the acoustic radiation force induced by the TSAWs to move laterally in the direction of the TSAW propagation and are thereby separated according to their size. In-droplet separation is then demonstrated through droplet splitting at a Y-junction. Compared to our previous studies, this acoustic approach offers the label-free and on-demand separation of different-sized micro-objects in moving droplets. The present method has potential uses such as in-droplet sample purification and enrichment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app