Add like
Add dislike
Add to saved papers

Understory dominance and the new climax: Impacts of Japanese knotweed ( Fallopia japonica ) invasion on native plant diversity and recruitment in a riparian woodland.

Riparian forests exhibit levels of ecological disturbance that leave them especially prone to biological invasions. Japanese knotweed ( Fallopia japonica ) is particularly suited to these habitats and is an aggressive invader along watercourses throughout its now-global range as an exotic invader. Using one of the few Silver Maple Floodplain Forest communities that has not been invaded by F. japonica in the West Branch Susquehanna River valley (Pennsylvania, USA) as a baseline, this study examines whether and how this primarily intact riparian forest community differs from nearby invaded communities in terms of 1) native species richness, 2) native species density, and 3) riparian forest tree recruitment. Defining a baseline (intact) community composition will inform restoration plans for local riparian forests where knotweed might be eradicated or reduced. Invaded and non-invaded sites differed statistically across species richness, species density, and tree recruitment. Our results suggest that F. japonica has reduced the diversity and abundance of native understory riparian plant species. The species also appears to have suppressed long-term tree recruitment, setting up a trajectory whereby the eventual decline of trees currently in the canopy could shift this community from a tree-dominated riparian forest to a knotweed-dominated herbaceous shrubland.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app