Add like
Add dislike
Add to saved papers

Genetic characterisation of tigecycline-resistant Enterobacter spp. in blood isolates causing bacteraemia.

OBJECTIVES: Tigecycline (TIG) is one of the most important antimicrobial agents used to treat infections by multidrug-resistant bacteria. However, rates of TIG-resistant pathogens have increased recently. This study was conducted to identify the antimicrobial susceptibility profiles and to investigate the role of efflux pumps in high-level TIG-resistant Enterobacter spp. isolates causing bacteraemia.

METHODS: A total of 323 Enterobacter spp. causing bacteraemia were collected from eight hospitals in various regions of South Korea. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method and Etest. Expression levels of the efflux pump gene acrA and its regulators (ramA and rarA) were examined by quantitative real-time PCR. Isolate relatedness was determined by multilocus sequence typing (MLST).

RESULTS: Among the 323 clinical isolates included in this study, 37 (11.5%) were TIG-non-susceptible, of which 8 isolates were highly resistant to TIG with MICs of 8mg/L (4 isolates) or 16mg/L (4 isolates). All high-level TIG-resistant isolates showed increased expression of acrA (0.93-13.3-fold) and ramA (1.4-8.2-fold). Isolates with a tigecycline MIC of 16mg/L also showed overexpression of rarA compared with TIG-susceptible isolates.

CONCLUSIONS: In this study, overexpression of acrA, ramA and rarA was observed in high-level TIG-resistant Enterobacter spp. isolates. We suggest that rarA might be involved in the regulation of acrA overexpression in high-level TIG-resistant Enterobacter spp. isolates. Efflux pump-mediated resistance should be closely monitored because it could be indirectly attributed to the use of other antibiotics transported by the same efflux pump.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app