JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage.

Developmental Biology 2018 Februrary 16
Genome stability relies notably on the integrity of centrosomes and on the mitotic spindle they organize. Structural and numerical centrosome aberrations are frequently observed in human cancer, and there is increasing evidence that centrosome amplification can promote tumorigenesis. Here, we use C. elegans seam cells as a model system to analyze centrosome homeostasis in the context of a stereotyped stem like lineage. We found that overexpression of the Plk4-related kinase ZYG-1 leads to the formation of one supernumerary centriolar focus per parental centriole during the cell cycle that leads to the sole symmetric division in the seam lineage. In the following cell cycle, such supernumerary foci function as microtubule organizing centers, but do not cluster during mitosis, resulting in the formation of a multipolar spindle and then aneuploid daughter cells. Intriguingly, we found also that supernumerary centriolar foci do not assemble in the asymmetric cell divisions that precedes or that follows the symmetric seam cell division, despite the similar presence of GFP::ZYG-1. Furthermore, we established that supernumerary centrioles form earlier during development in animals depleted of the heterochronic gene lin-14, in which the symmetric division is precocious. Conversely, supernumerary centrioles are essentially not observed in animals depleted of lin-28, in which the symmetric division is lacking. These findings lead us to conclude that ZYG-1 promotes limited centriole amplification solely during the symmetric division in the C. elegans seam lineage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app