JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Histone deacetylase inhibition-mediated neuronal differentiation via the Wnt signaling pathway in human adipose tissue-derived mesenchymal stem cells.

Histone deacetylase (HDAC) inhibitors, which have an effect on cell homeostasis, cell cycle progression, and terminal differentiation, can act to promote self-renewal and enhance directed differentiation of several lineages of stem cells. However, the roles of HDAC inhibitors on neurogenic differentiation and the mechanisms of Wnt signaling following treatment with HDAC inhibitors remain unclear in stem cells. We hypothesized that HDAC inhibitors regulate downstream Wnt signaling and neurogenic differentiation of mesenchymal stem cells. Following neural induction with supplementary factors, human adipose tissue-derived mesenchymal stem cells (hADSCs) were differentiated into neurogenic cells in vitro. We examined the neurogenic differentiation induced by the HDAC inhibitors, MS-275, sodium butyrate (NaB), trichostatin A (TSA), and valproic acid (VPA), by RT-PCR and western blot analysis. Based on RT-PCR analysis, the expressions of NEUROG2 and NEFL were highly increased following HDAC inhibitor treatment compared with control medium. Most of the neuronal marker genes were expressed when neural-induced hADSCs (NI-hADSCs) were treated with the HDAC inhibitors individually. Interestingly, expression of most of the Wnt-related genes were highly increased following treatment with the HDAC inhibitors, especially with MS-275 treatment. Further, the protein level of Wnt5 was upregulated after neurogenic induction with MS-275 and VPA treatment, based on western blot analysis. Furthermore, we found that c-Jun expression was increased after treatment with the HDAC inhibitors, except with NaB. The protein levels of phosphor-JNK and phosphor-GSK-3β were upregulated considerably. In conclusion, the HDAC inhibitors could induce neurogenic differentiation of hADSCs by activating canonical Wnt or non-canonical Wnt signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app