Add like
Add dislike
Add to saved papers

Liposomal formulation of glycosphingolipids from Sphingomonas paucimobilis induces antitumour immunity in mice.

Natural Killer T (NKT) cells play an important role in host's anti-tumour immune response. Glycosphingolipids (GSLs) isolated from Sphingomonas paucimobilis have the ability to stimulate NKT cells. In this study, the activity of free GSLs or GSLs-incorporated liposomes (glycosphingosomes) was investigated against dimethyl-α-benzanthracene (DMBA)-induced tumours in mice. The anti-tumour immunity of GSLs- or glycosphingosomes-loaded bone marrow-derived dendritic cells (BMDCs) was investigated in tumour-bearing mice. The Immunotherapeutic potential of co-administration of liposomal doxorubicin (Lip-Dox) and GSLs or glycosphingosomes was assessed by measuring cytokine levels and VEGF in the tumour tissues. Pretreatment with glycosphingosomes significantly delayed the frequency of tumour formation. Immunotherapy with glycosphingosomes-loaded BMDCs increased serum IFN-γ level and survival rate in mice. The effect of immunotherapy was dependent on effector functions of NK cells because the depletion of NK cells abolished the effects of immunotherapy. There was reduced tumour growth with low expression of VEGF in the group of mice treated with glycosphingosomes and Lip-Dox combination. Moreover, the splenocytes secreted higher levels of IFN-γ, IL-12 and lower TGF-β level. The results of this study indicate that glycosphingosomes can induce better antitumour immunity and may be considered a novel formulation in antitumour therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app