Add like
Add dislike
Add to saved papers

Unusual Stability of a Recombinant Verrucomicrobium spinosum Tyrosinase to Denaturing Agents and Its Use for a Production of a Protein with Adhesive Properties.

Tyrosinases catalyze oxidation of phenols with a formation of biphenols, quinones, and highly polymerized melanins. Tyrosinases have prospects for industrial use to remove phenols, also in biosensors, in bioorganic synthesis, and for a production of biocompatible adhesives (medical glues). Despite growing fields of potential applications, a selection of commercially available tyrosinases are currently limited to a single enzyme which is isolated from fruiting bodies of mushrooms. This article describes a preparation of recombinant tyrosinase from a bacterium Verrucomicrobium spinosum using a heterologous expression in Escherichia coli. Recombinant V. spinosum tyrosinase has high specific activity (13,200 U/mg). A resistance of the enzyme was investigated to chemical agents used to denature proteins and keep poorly solvable proteins in a solution. The enzyme preserves activity in the presence of urea and retains at least a fraction of its enzymatic activity at concentrations of urea up to 4.5 M. An addition of sodium lauroyl sarcosinate to 1 or 2% activates the tyrosinase. Novel means of quantitatively expressing tyrosinase activity is described in this article. The method uses a set of parameters obtained from non-linear estimation of the progress curves and is suitable for enzymatic reactions which do not comply with Michaelis-Menten kinetics. Tyrosinase may be used to introduce into proteins a post-translational modification which is a conversion of tyrosine residues (Tyr) into residues of 3,4-dioxyphenylalanine (DOPA). The presence of DOPA provides the polypeptides with a capability of strong molecular adhesion. Co-expression of tyrosinase and a recombinant protein mimicking marine mussel-encoded adhesive proteins resulted in obtaining of the protein in which at least a part of Tyr residues had been converted to DOPA. The DOPA-containing protein had high adhesion strength (2.5 MPa).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app