Add like
Add dislike
Add to saved papers

Application of Fractal theory for crash rate prediction: Insights from random parameters and latent class tobit models.

The repercussions from congestion and accidents on major highways can have significant negative impacts on the economy and environment. It is a primary objective of transport authorities to minimize the likelihood of these phenomena taking place, to improve safety and overall network performance. In this study, we use the Hurst Exponent metric from Fractal Theory, as a congestion indicator for crash-rate modeling. We analyze one month of traffic speed data at several monitor sites along the M4 motorway in Sydney, Australia and assess congestion patterns with the Hurst Exponent of speed (Hspeed ). Random Parameters and Latent Class Tobit models were estimated, to examine the effect of congestion on historical crash rates, while accounting for unobserved heterogeneity. Using a latent class modeling approach, the motorway sections were probabilistically classified into two segments, based on the presence of entry and exit ramps. This will allow transportation agencies to implement appropriate safety/traffic countermeasures when addressing accident hotspots or inadequately managed sections of motorway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app