Add like
Add dislike
Add to saved papers

Optimal design of graphene nanopores for seawater desalination.

Extensive molecular dynamics simulations are employed to optimize nanopore size and surface charge density in order to obtain high ionic selectivity and high water throughput for seawater desalination systems. It is demonstrated that with the help of surface charge exclusion, nanopores with diameter as large as 3.5 nm still have high ionic selectivity. The mechanism of the salt rejection in a surface-charged nanopore is mainly attributed to the ion concentration difference between the cations and anions induced by the surface charges. Increasing surface charge density is beneficial to enhance ionic selectivity. However, there exists a critical value for the surface charge density. Once the surface charge density exceeds the critical value, charge inversion occurs inside a nanopore. Further increasing the surface charge density will deteriorate the ionic selectivity because the highly charged nanopore surface will allow more coions to enter the nanopore in order to keep the whole system in charge neutrality. Besides the surface charge density, the nanopore length also affects the ionic selectivity. Based on our systematic simulations, nanopores with surface charge density between -0.09 C/m2 and -0.12 C/m2 , diameters smaller than 3.5 nm, and membrane thickness ranging between 8 and 10 graphene layers show an excellent performance for the ionic selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app