Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO 2 .

Water Research 2018 March 16
Reactive Electrochemical Membrane (REM) prepared from carbothermal reduction of TiO2 is used for the mineralization of biorefractory pollutants during filtration operation. The mixture of Ti4 O7 and Ti5 O9 Magnéli phases ensures the high reactivity of the membrane for organic compound oxidation through • OH mediated oxidation and direct electron transfer. In cross-flow filtration mode, convection-enhanced mass transport of pollutants can be achieved from the high membrane permeability (3300 LMH bar-1 ). Mineralization efficiency of oxalic acid, paracetamol and phenol was assessed as regards to current density, transmembrane pressure and feed concentration. Unprecedented high removal rates of total organic carbon and mineralization current efficiency were achieved after a single passage through the REM, e.g. 47 g m-2 h-1 - 72% and 6.7 g m-2 h-1 - 47% for oxalic acid and paracetamol, respectively, at 15 mA cm-2 . However, two mechanisms have to be considered for optimization of the process. When the TOC flux is too high with respect to the current density, aromatic compounds polymerize in the REM layer where only direct electron transfer occurs. This phenomenon decreases the oxidation efficiency and/or increases REM fouling. Besides, O2 bubbles sweeping at high permeate flux promotes O2 gas generation, with adverse effect on oxidation efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app