Add like
Add dislike
Add to saved papers

Preliminary study and bioinformatics analysis on the potential role of CagQ in type IV secretion system of H.pylori.

Helicobacter pylori (H.pylori), is a major causative agent of chronic gastritis, gastric carcinoma and duodenal ulcer. Remarkably, H.pylori carries cytotoxin-associated gene pathogenicity island (CagPAI) which encodes a type IV secretion system (T4SS). T4SS is capable of forming a syringe-like structure to deliver oncoprotein cytotoxin-associated Antigen (CagA) into gastric epithelial cells and resulting in a cascade of events in host cells, such as induction of pro-inflammatory cytokines, alteration of cellular gene expression and cytoskeletal rearrangements. Among of those proteins in T4SS, CagQ still remains unknown functions. In this study, we performed analysis of protein-protein interaction and revealed that CagQ correlated with the most virulence factor CagA in T4SS. Interestingly, our data demonstrated that CagQ-deficient mutant strain had significantly lower expression in both mRNA and protein levels of CagA compared with H.pylori wild-type strain 26695. Moreover, we demonstrated that CagQ deletion also played a vital role in suppressing CagA-induced apoptosis of host gastric epithelial cells. To further investigate the role of CagQ in T4SS, we used bioinformatics analysis to provide a preliminary insight into CagQ. These results showed that CagQ possessed a transmembrane region from amino acid 50-68 which is also consistent with the prediction of hydrophobic scale and structure modeling. Thus, we conclude that CagQ is a membrane protein in T4SS and is crucial for maintaining CagA expression and CagA-induced apoptotic effects. This provides a novel specific therapeutic target for H.pylori CagA-induced gastroduodenal diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app