Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The relationship between bone turnover and insulin sensitivity and secretion: Cross-sectional and prospective data from the RISC cohort study.

Bone 2018 March
Bone metabolism appears to influence insulin secretion and sensitivity, and insulin promotes bone formation in animals, but similar evidence in humans is limited. The objectives of this study are to explore if bone turnover markers were associated with insulin secretion and sensitivity and to determine if bone turnover markers predict changes in insulin secretion and sensitivity. The study population encompassed 576 non-diabetic adult men with normal glucose tolerance (NGT; n=503) or impaired glucose regulation (IGR; n=73). Baseline markers of bone resorption (CTX) and formation (P1NP) were determined in the fasting state and after a 2-h hyperinsulinaemic, euglycaemic clamp. An intravenous glucose tolerance test (IVGTT) and a 2-h oral glucose tolerance test (OGTT) were performed at baseline, and the OGTT was repeated after 3years. There were no differences in bone turnover marker levels between NGT and IGR. CTX and P1NP levels decreased by 8.0% (p<0.001) and 1.9% (p<0.01) between baseline and steady-state during the clamp. Fasting plasma glucose was inversely associated with CTX and P1NP both before and after adjustment for recruitment centre, age, BMI, smoking and physical activity. However, baseline bone turnover markers were neither associated with insulin sensitivity (assessed using hyperinsulinaemic euglycaemic clamp and OGTT) nor with insulin secretion capacity (based on IVGTT and OGTT) at baseline or at follow-up. Although inverse associations between fasting glucose and markers of bone turnover were identified, this study cannot support an association between insulin secretion and sensitivity in healthy, non-diabetic men.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app