Add like
Add dislike
Add to saved papers

Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Rα2.

Journal of Immunology 2018 Februrary 16
In obesity, IL-13 overcomes insulin resistance by promoting anti-inflammatory macrophage differentiation in adipose tissue. Endogenous IL-13 levels can be modulated by the IL-13 decoy receptor, IL-13Rα2, which inactivates and depletes the cytokine. In this study, we show that IL-13Rα2 is markedly elevated in adipose tissues of obese mice. Mice deficient in IL-13Rα2 had high expression of IL-13 response markers in adipose tissue, consistent with increased IL-13 activity at baseline. Moreover, exposure to the type 2 cytokine-inducing alarmin, IL-33, enhanced serum and tissue IL-13 concentrations and elevated tissue eosinophils, macrophages, and type 2 innate lymphoid cells. IL-33 also reduced body weight, fat mass, and fasting blood glucose levels. Strikingly, however, the IL-33-induced protection was greater in IL-13Rα2-deficient mice compared with wild-type littermates, and these changes were largely attenuated in mice lacking IL-13. Although IL-33 administration improved the metabolic profile in the context of a high fat diet, it also resulted in diarrhea and perianal irritation, which was enhanced in the IL-13Rα2-deficient mice. Weight loss in this group was associated with reduced food intake, which was likely related to the gastrointestinal effects. These findings outline both potentially advantageous and deleterious effects of a type 2-skewed immune response under conditions of metabolic stress, and identify IL-13Rα2 as a critical checkpoint in adipose tissues that limits the protective effects of the IL-33/IL-13 axis in obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app