Add like
Add dislike
Add to saved papers

Kinetics and Products of the Reaction of OH Radicals with ClNO from 220 to 940 K.

The kinetics and products of the reaction of OH radicals with ClNO have been studied in a flow reactor coupled with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium and over a wide temperature range, T = 220-940 K. The rate constant of the reaction OH + ClNO → products was determined under pseudo-first order conditions, monitoring the kinetics of OH consumption in excess of ClNO: k1 = 1.48 × 10-18 × T2.12 exp(146/T) cm3 molecule-1 s-1 (uncertainty of 15%). HOCl, Cl, and HONO were observed as the reaction products. As a result of quantitative detection of HOCl and Cl, the partial rate constants of the HOCl + NO and Cl + HONO forming reaction pathways were determined in the temperature range 220-940 K: k1a = 3.64 × 10-18 × T1.99 exp(-114/T) and k1b = 4.71 × 10-18 × T1.74 exp(246/T) cm3 molecule-1 s-1 (uncertainty of 20%). The dynamics of the title reaction and, in particular, non-Arrhenius behavior observed for both k1a and k1b in a wide temperature range, seems to be an interesting topic for theoretical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app